
Introduction to Computer
programming

Samuel Kizito

Computer programming

Computer Programming is the process
of creating computer software using a
programming Language.
It involves knowing the statements
used in a programming language and
how to choose and arrange those
statements so that the computer
performs the tasks logically

Importance of programming

• programming meets the increasing
demand for computer programs.

• It provide instructions to a computer to
do a specific task

• Programming provides a better
understanding of how computers work.

• It helps develop thinking skills.

• It develops logical way of doing things.

• Computer programming is a lucrative job.
• It is fun.
• It is rewarding to see your ideas come out

to life as a program.
• With the knowledge of programming, the

user is able to evaluate software before
purchasing or using one.

Limitations to programming

• Limited knowledge of a programming
language

• Some programming languages are not user
friendly.

• The difficulty to choose an appropriate
programming language to use.

Computer program

 A Computer program is a list of
logical instructions for the computer
to follow in performing a task.

 A computer program is a step by
step set of instructions that a
computer has to work through in a
logical sequence in order to carry
out a particular task.

 Programs are written by people
known as Programmers.

Features of a computer program

•Any program:

1. Has instructions to process data types
including numeric and alphanumeric data.

2. Uses operations to process data which
include arithmetic, relational/comparison,
and logical operations.

3. performs input and output operations,
must provide instructions for inputting
data into memory and outputting
information

4. must count and accumulate totals for
reporting purposes. The area in internal
memory to record number of times an
event, activity, or condition is
encountered is called a counter, to record
subtotal or total of certain numeric value
is the accumulator

5. Has capability to store data temporarily in
and retrieve it from internal memory for use.
ie, as variables, constants, dictionaries,
turples and arrays of data

Programming Languages

 A Programming language is the
vocabulary and set of grammatical rules
for use by people to write instructions for
the computer to perform specific tasks.

 There are many different programming
languages each having a unique set of
keywords (words that it understands) and
a special syntax (grammar)for organising
program instructions.

Examples of common
programming languages

Java C#
PHP Object-C
Python
C
C++
Visual basic
Javasript
Ruby
SQL

Popular programming languages

10 best programming languages

Levels of programming
languages

Programming languages are classified into two
levels: 1)The low level language is machine
language or very close to machine language.

Examples of low level languages are:

•Machine languages (first generation languages),

•Assembly languages (second generation
languages)

Machine language – First
Generation Language (1GL)

•The machine language is low level
language that writes programs using
the machine code of 1s and 0s, which is
directly understood by the computer.

Assembly language – Second
Generation Language (2GL)

Assembly language is low level symbolic
language written using mnemonics
(abbreviated sets of letters) or short codes
that suggest their meaning and are
therefore easier to remember. But must be
converted to machine language before the
computer can interpret it.

An example of a program code to add and store two
numbers would be:

LDA A, 20: load accumulator A with the value 20

ADD A,10 : add the value 10 to accumulator A

STO B, A: store contents of accumulator A into
storage register B

NOP : no operation (stop here)

Characteristics of 2GL

•Assembly language, being machine dependent,
is faster and more efficient in the use of
hardware than high-level programming
languages.

•Assembly languages have to be translated into
machine language by language translators
known as assemblers for the processor to
understand.

•Easier to write than machine language

•Assembly language is machine dependent.

The code is not very easy to understand,

hence the introduction of high level

programming languages.

Advantages of low level
languages

• Very fast to execute because it is already in
the language that the computer can
understand.

• Require little memory resources takes up
less storage space.

• No need of language translator for machine
language.

• useful for writing system programs where
accuracy is required

Disadvantages of low level
languages

•Difficult to interpret by the programmer
(requires the aid of a reference manual to
interpret the meaning of each code)

•Easy to make mistakes in the sequence of 1s
and 0s; replacing a 1 for a 0 can result in the
wrong command/instruction being executed

•It is difficult to identify mistakes made

•Time-consuming, slow and tedious to write

• Machine dependent, e.g. one written for an

IBM machine cannot work on an Apple

machine.

• Makes writing of complex programs difficult.

High-level programming
languages
•High level programming language is a language
that is near to natural language, therefore it is
machine independent and uses variables
and objects, Boolean expressions, functions,
loops, threads, locks which are similar to their
meaning (abstraction).

•High-level languages have evolved over the
years and can be grouped into five categories:
Third Generation Languages (3GL), Fourth
Generation Languages (4GL), Object Oriented
Programming Languages (OOP), Fifth
Generation Languages (5GL), Scripting
Languages, and Natural Languages

•Natural languages are human languages
like English or French

•High level languages are problem oriented.

•The high level programs are easy to write
because the words and grammar of high-level
languages are near to natural language.

•High-level languages are machine independent
Since the syntaxes of high-level languages are
standardised, the languages can be used on
different computer systems.

•Programs written in a high-level language must
be translated into machine language by a
compiler or interpreter.

Object-Oriented
programming (OOP)

•Object-oriented programming (OOP) is a
programming language model organised around
objects and data.

• In OOP, the programmer packages the data and
the program procedures into a single unit called
an object. The procedures in the object are called
Operations(Methods), and the data elements are
called attributes(Variables).

Advantages of high level
programming languages

•High-level language programs are easy to debug

•They are machine independent. Provide programs
that can be used on more than one computer.

•They are user friendly and easy to learn because
they are near to natural language.

•They are flexible hence they enhance the creativity
of the programmer, increasing productivity

•Allows the programmer to focus on understanding
the user’s needs and design the required software.

•They permit faster development of large programs.

Disadvantages of high level
programming languages

• They are executed much slower than low-

level programming languages

• They have to be translated into machine

code before execution

• Require more memory than the low level

languages

Examples of high level
programming languages used

FORTRAN (FORmula TRAnslator)developed
in the late 1950s developed to design
scientific applications

•COBOL (Common Business Oriented
Language) developed in early 1960s to
develop business applications.

•RPG (Report Program generator) was
developed in early 1960s to assist in
generating reports and complex calculations.

•BASIC (Beginner’s All-purpose symbolic
instruction code) developed in mid 1960 Basic
versions include MS-BASIC, QBASIC,
SmallBASIC and visual basic.

•Pascal was developed in the late 1960s for the
purpose of teaching structured programming
concepts

•C developed in the early 1970s to write system
software

•Ada was developed in the late 1970s originally
developed to meet the needs of embedded
computer systems

•C++ developed in the 1980s is an object-
oriented language mainly to develop
application software

•Note that in addition to the major languages
discussed above, there are many other
programming languages that have been
developed such as JavaScript, and Python

Program Syntax

Program Syntax is the spelling and grammar
of a programming language.
(Each program defines its own syntactical
rules that control which words the computer
understands, which combinations of words
are meaningful, and what punctuation is
necessary.)

Computer language
semantics

•The Meaning of the language’s features.
Semantics describes the processes a
computer follows when executing a
program in that specific language.

Source code

Source code is a Program instruction
written as text file by the programmer, that
must be translated by a compiler or
interpreter or assembler into an object code
before execution.
Source code cannot be understood by the
computer until it has been translated into
machine code.

Program execution

Execution is the process by which a computer

system performs the instructions of a computer

program.

Object code

Object code is a program code in
machine language that is ready for
execution by the computer.

Language Translators
(language processors)

Language translators are system
programs that convert assembly language
and high-level language to machine
language for the program to execute
because Computers work in machine code
only,

Programs must be translated into

machine/Object codes before execution

There are three types of translators:
1. Assemblers
2. Compilers
3. Interpreters

Assemblers

The assembler is a language that
translates an assembly-language program
into machine code.

Compilers

A compiler is a computer program
that transforms the entire source code
written in a high level programming
language into object code for
execution.

How a Compiler works

Interpreters

An interpreter is a computer program
that directly executes a high level
programming language one line at a
time to run each time the source code is
run because no object code is
generated.

How an Interpreter works

Example of a program code
(small basic language)

TextWindow.Write("enter the
Temperature in Fahrenheit ")
fahr = TextWindow.ReadNumber()
celsius = (5 * (fahr - 32) / 9)
TextWindow.WriteLine("This
Temperature in celcius is " + celsius
+" degrees")

fahr = input("Please enter the current Temperature in fahrenheit:")

Celsius = (5 * (fahr - 32)//9)

print ("The temperature in Celsius is“, Celsius, "degree")

TextWindow.title= “Area of Triangle"
TextWindow.writeline("What is the length of
the triangle?")
length= TextWindow.read()
TextWindow.writeline("what is the height of
the triangle?")
height= TextWindow.Read()
area= 1/2*length*height
TextWindow.writeline("the area of the
triangle is " + area + " cm2")

length = input ("What is the area of the
Triangle?:")
height = input ("What is the Height of the
Triangle?:")
area = (1//2 * length)* height
print ("The area of the triangle is“, area, "squire
cms")

TextWindow.title="My first program"
TextWindow.write("What is your name?")
Username= TextWindow.Read()
TextWindow.Writeline("What is your year of
birth? "+ username)
yearofbirth = TextWindow.ReadNumber()
TextWindow.Write("enter current year ")
currentyear = TextWindow.ReadNumber()
age = currentyear - yearofbirth
TextWindow.WriteLine("You are " + age + "
years old " + Username)

TextWindow.Write("Enter the temperature
today (in F):")
temp = TextWindow.ReadNumber()
 If temp > 100 Then
TextWindow.WriteLine("It is pretty hot.")
 ElseIf temp > 70 Then
TextWindow.WriteLine("It is pretty
nice.")
ElseIf temp > 50 Then
TextWindow.WriteLine("Don't forget your
coat.")
 Else
TextWindow.WriteLine("Stay home.")
EndIf

height = input ("enter height:")

base = input ("enter base:")

area = 1//2 * (base)*(height)

print ("area of the triangle is" +area)

Object-Oriented programming
(OOP)

Object-oriented programming is a
programming language model
organized around objects and data.

Objects

an object is a self-contained component
that has properties and methods needed
to make a certain type of data useful.
An object’s properties are what it knows
and its methods are what it can do.
An object can be a variable, function, or
data structure

Control of program flow

Program flow is controlled by using
Operators.

Operations/operators

These are symbols used to do
mathematical or logical procedures.
Common simple examples include
arithmetic, conditional/comparison, and
Boolean operators

Arithmetic operators

These are operators used to
carry out arithmetic operations

Arithmetic/numeric operators

Operands

In mathematics, an operand is a quantity
upon which a mathematical operation is
performed.

height = input ("enter height:")

base = input ("enter base:")

area = 1//2 * (base)*(height)

print ("area of the triangle is" +area)

Comparison/conditional/relational
operators

These are used to compare two or more
expressions or variables to see whether
they are equal or one value is greater or
less than the other value, then the
program decides what actions to take, e.g.
whether to execute a program or
terminate the program. Or returning a
Boolean expression of True or false

Operator Meaning

= Equal to

> More than

< Less Than

>= More than and equal

<= Less than and equal

<> Not Equal to

Comparison Operators

if (BOOLEAN EXPRESSION):

STATEMENTS_1 # Executed if condition evaluates
to True

else:

STATEMENTS_2 # Executed if condition evaluates to
False

if (BOOLEAN EXPRESSION):
STATEMENTS_1 # Executed if condition evaluates to True

else:
STATEMENTS_2 # Executed if condition evaluates to False

score = input ("enter student mark")

if score > 50:

print ("Pass")

else:

print ("failure")

Boolean/logic operators

When selection is based upon one or more
expressions/decisions being true or false, it is
possible to combine the
expressions/decisions together using the
Boolean operators AND or OR or NOT
If the AND operator is used, both conditions
must be met in order for the total expression
to be true.
If the OR operator is used, either condition
must be met in order for the total expression
to be true.

•For the NOT operator, the statement is true
if it is contrary to the condition.

With the AND operator

 Both conditions/operands must be met for the
expression to be true; if one is false, then
condition is false.

Example

 A club plays football only on Sundays and only if it
is not raining. Read the day and the weather and
print ‘Game on’ if it is a suitable day and weather
for playing.

a b a AND b

False False False

False True False

True False False

True True True

Truth table that describes the semantics of
and (all possible combinations of a and b)

With the OR operator

if either condition is true then the action is
taken (true). So, if the day is ‘Sunday’,
regardless of the weather, the game is on. If
the weather is ‘No Rain’, regardless of the
day, the game is on:

a b a or b

F F F

F T T

T F T

T T T

The truth table describing or:

Xor

exclusive or is a logical operator
that outputs true only when
inputs differ (one is true, the
other is false)

A B A xor B

0 0 0

1 0 1

0 1 1

1 1 0

a not a

F T

T F

logical operator, not, only takes a single
operand, so its truth table only has two rows:

Key (reserved)words

Keywords are reserved words with a
special meaning for a particular
programming language, therefore cannot
be used as names for programming
elements such as variables and
procedures.
Examples of common reserved words
include: do, for, if, while, auto, case, and
many others.

Naming and storing data

• The instructions in the program must have
data to work with.

• e.g. To add two numbers together
requires an add instruction.

• The programmer must give the two
numbers names for the computer to
identify the items.

• These must be stored in computer
memory for the computer to use the
names to identify the data.

• Data is stored either as constants or as
Variables

• Constants have values that are fixed for
the duration of the program.

• For example; in case of a program to
convert miles to Kms a conversion rate
constant can be set as

• Convert_miles_to_Km = 1.6
• (ie there about 1.6 Kms to the mile)
• Pi = 22/7

Variables

A variable is a storage location
in computer memory for data in
a program. They are a way of
naming information for later
usage. Each variable has a name
whose values can change. The
equal (=) sign is used to assign a
value to a variable.

a = 9
b = 12
c = 3
x = a - b / 3 + c * 2 - 1
y = a - b / (3 + c) * (2 - 1)
z = a - (b / (3 + c) * 2) - 1
print("X = ", x)
print("Y = ", y)
print("Z = ", z

Examples of acceptable
variable names

Starting Time
Interest_Value
TimeOfDay
Number_of_days
Name
Area
Perimeter
X
Y etc.

Rules for naming variables

No more than 40 characters
They may include letters, numbers, and
underscore
The first character must be a letter
You must not use a reserved word
The equal sign (=) is used to a sign a value
to a variable
E.g. Width = 10
No parenthesis are used to define the value
of a variable
They are case sensitive

Data types used as Variables

Numeric/numbers , strings, Boolean, and
array.
Numeric data is either integer or decimal
numbers. Decimal numbers are floats/
floating points. Numeric data can be
positive or negative.
E.g. counter = 100 this is an integer variable.
A decimal is a number with a decimal
point. E.g. Miles = 1000.01 this is a floating
point variable.

String. a string is a set of characters in
between quotation marks that can be a
name, a string of numbers, a sentence, a
paragraph etc.

e.g. name = “Peter” is a string variable
The plus (+) sign is the string concatenation
operator.
e.g. print “hello world”+ “its 10 PM”
String concatenation is the operation of
joining character strings.

S = “Hello World”

Print (s)

Hello World

Note that a variable can be redefined. E.g.

Score = 8

Score = score + 1

1. How do you tell Python that a variable is a
string (characters) instead of a number?
2 Once you have created a variable, can you
change the value that is assigned to it?
3 With variable names, is TEACHER the same
as TEACHEr?
4 Is 'Blah' the same as "Blah" to Python?
5 Is '4' the same as 4 to Python?
6 Which of the following is not a correct
variable name? Why?
a) Teacher2
b) 2Teacher
c) teacher_25
d) TeaCher

7 Is "10" a number or a string?

1 Make a variable and assign a number to it (any
number you like). Then display your variable using
print.
2 Modify your variable, either by replacing the old
value with a new value, or by adding
something to the old value. Display the new value
using print.
3 Make another variable and assign a string (some
text) to it. Then display it using
print.
4 calculate the number of
minutes in a week. But this time, use variables. Make
a variable for DaysPerWeek, HoursPerDay, and
MinutesPerHour (or make up your own names), and
then multiply
them together.

5 How many minutes would there be in a week if
there were 26 hours in a day? (Hint: Change the
HoursPerDay variable.)

TextWindow.Write("Enter temperature in
Fahrenheit: ")
fahr = TextWindow.ReadNumber()
Celsius = 5 * (fahr - 32) / 9
TextWindow.WriteLine("Temperature in
Celsius is " + Celsius)

fahr = ("Enter temperature in Fahrenheit: ")

celcius = 5 * (fahr - 32) // 9

print ("the temperature in celcius is" + celcius)

Strings are always enclosed in quotes.
Examples of strings: (“I am a Small Basic
programmer”) (“012345”),(“Title Author”)
More than one string can be concatenated
(combined into one string) with a + operator
e.g “your age is ”+”36 ”+years (leave
space between the last word and the
closing parenthesis to create space between
combined word)

Boolean Data. A data type that can only
represent two values: true or false.

e.g. fee.paid = false
Lists. This is an array used to store a set of

elements together. E.g. lst=[1,2,3,4]
Dictionary. A tool that maps individual

keys to specific variables. Each key in the
dictionary is unique and is mapped to a
specific value

Local and Global Variables

• A local variable is one for only a section
of the program

• A global variable is one that is available
for the entire program.

Changing Data types

float()

int()

str()

1 Use float() to create a number from a string
like '12.34'. Make sure the result is
really a number!
2 Try using int() to create an integer from a
decimal number like 56.78. Did the answer
get rounded up or down?
3 Try using int() to create an integer from a
string. Make sure the result is really an
integer!

Using variables: example
(small Basic)

number1 = 10
number2 = 20
number3 = number1 * number2
TextWindow.WriteLine(number3)

TextWindow.title="The age calculator"

currentDate=clock.Year

TextWindow.WriteLine("State your First name")

FirstName=textwindow.Read()

TextWindow.WriteLine("Enter your year of birth "

+ FirstName +" Dear")

yearOfBirth=textwindow.Read()

age=currentDate-yearOfBirth

TextWindow.WriteLine("You are " + age + "

years old, " +FirstName)

Arrays

An array is a list or table of data under
one variable name/index. each item in the
list is an element. For example, the program
can store the names of individuals in a class
plus their, address and age which can be
selected by the index.
A list can be created by defining it with []

list = [2, 4, 7, 9]
list2 = [3, "test", True, 7.4]

Example of an array

person["Name "] = " Kizito Samuel"
person["Age "] = 30
person["Address "] = " Wakiso"
TextWindow.WriteLine(person)

Procedures/routine

A sequence of program instruction
i.e. a group of instructions that
perform a specific task.

Functions

In programming, a function is a
named section of a program that
performs a specific task to return a
value, i.e. a type of procedure or
routine

Types of programming

•Procedural –oriented

•Functional

• logic

Procedural-oriented
programming

 Procedural programming uses a set of
instructions telling a computer what to do
step by step and how to perform from the
first code to the next code.
Procedures, also known as routines,
subroutines, methods, or functions contain
a series of computational steps to be
carried out.

Functional programming

This is a style of programming which
represents computations as the evaluation
of mathematical expressions/mathematical
functions.
A mathematical expression is a relation
between a set of inputs and a set of outputs
e.g. f(x) = x+3, that is f of x equals to x plus
three.

Logic programming

Logic programming is a programming
pattern based on formal logic/reasoning.
 A set of sentences in logical form,
expressing facts and rules about some
problem field.

The program development life
cycle (PDLC)

PDLC are the stages or steps through

which a computer program is created.

PDLC is a continuous process that consists of
five/six general steps:
1. Analyse problem
2. Design program
3. Code program
4. Test program
5. Formalise program
6. Maintain program

PDLC

Problem analysis

This involves identifying the need to
overcome a given problem and defining the
problem.
for example, the need for a school to
process students marks and grade
accurately at the end of term.
Defining the problem involves identifying
the user’s program objectives, desired
inputs, outputs, and processing.

Defining the problem

In defining the problem there must be no
ambiguity. The problem should be clear and
concise and have only one meaning.
Examples of unambiguous problems are:
i) Calculating the price of an item after a 10%
discount
ii) Converting a temperature from ° C to ° F
iii) Computing the average rainfall for the
month of May in a certain place.

Analysing the problem

In order to develop an algorithm
(procedure) to accomplish a certain task one
must analyse the task as a sequence of
instructions that can be performed by the
computer.
These instructions can be divided into three
main parts: input and storage instructions,
processing instructions, and output
instructions.

Program design

This is the actual development of a
program’s processing logic (algorithm).

Programme Algorithm

An algorithm is a sequence of instructions
written using special rules and
statements which, if followed, produces a
solution to the given problem.

Example of an algorithm

Algorithm:
>Read student name and marks obtained.
Calculate total marks and average marks.
Write student name, total marks, average
marks.

Program design involves three tasks:
(i) grouping the program activity into
modules (a module a logical section in the
program)
(ii) develop a solution algorithm for each
module.
(iii) test the solution algorithm

Top-down design

This involves breaking down the
programme into smaller, manageable
components represented graphically on
a hierarchy chart;
the top most showing the main module
referred to as the main routine, which is
then subdivided into smaller sections
also referred to as sub-routines.
Start by grouping tasks into modules
by focusing on what must be done
(requirements).

Each module is represented by a rectangle
labeled by its name. e.g. To calculate pay,
there may be need to create submodules to
compute regular pay, overtime pay, and
compute deductions

Top-down chart

Process exams

Read input

Read student
marks record

Computer marks

Calculate
Total marks

Calculate average
marks

Determine
grade

Rank the
student

Generate output

Generate exam
analysis report

Generate Student
report form

the Design details using Pseudo-code,
flowcharts and control structures

The two ways to show program details
is either using pseudo-code or drawing
the details using flowcharts, or both.

Pseudo-code

A Pseudo-code is a narrative/descriptive
form using human language statements to
describe the logic and processing flow of
a program.

Pseudo code

START
READ student name, mark1, mark2, mark3,
mark4
Totalmarks = mark1 + mark2 + mark3 +
mark4
Averagemark = Totalmarks / 4
PRINT student name, totalmarks,
averagemarks
STOP

Pseudo-code commonly used
keywords

Pseudo-code uses several keywords to indicate

common input, output, and processing operations:

Input: READ, READLINE, OBTAIN, GET,
ENTER, INPUT
PROCESSING: Initialize, SET, INIT Add one,
INCREMENT, BUMP, COMPUTE, CALCULATE,
DETERMINE
Output: PRINT, DISPLAY, SHOW, WRITE,
WRITELINE

Task

Write out a program pseudo-code for the
following problems:
Converting degrees Celsius to Fahrenheit
Calculating the age of an individual
Any other?

Program flowchart

This is a diagrammatic representation of a
program’s algorithm using standard
symbols and short statements to describe
various activities.
 These symbols are called ANSI symbols
(called after the American National
Standards Institute that developed them).
A flowchart shows how a program works
before one begins the actual coding of the
program.

Yes

Flowchart (input-output)

Lamp flowchart

Flowchart to add two numbers entered
by user

Num_1 = 12
Num_2 = 6
sum = Num_1 + Num_2
print (sum)

a flowchart to find all the roots of
a quadratic equation ax2+bx+c=0

Task

Use a flow chart to map out a program logic
(algorithm):
1. Determine performance of candidates,
where a score above 50% is a pass while less
than 50% is a failure.
2. Write an algorithm to determine a
student’s final grade and indicate whether it
is passing or failing. The final grade is
calculated as the average of four marks.
Passing is 40% and above

Determine performance of candidates, where a score

above 50% is a pass while less than 50% is a failure.

score = int (input ("enter student mark: "))

if score > 50:

print ("Pass")

else:

print ("failure")

determine a student’s final grade and indicate whether it is
passing or failing. The final grade is calculated as the
average of four marks. Passing is 40% and above

Coding the program

This is the actual writing of the program to
get a program source code using a specific
programming language once the design
has been developed and reviewed.
Computer programs are written/coded
using the specific rules and statements of
the particular computer programming
language being used.

Save the program and run it. If the program
doesn’t do what you expect, or you get
any error messages, try to fix it and make it
work

Factors to consider in Selecting
the program to use

• Ease of learning the language. The easier
the quicker for one to learn and use it to
come up with a program. Ease of
understanding makes it easy to use and
debug.

• Speed of development of a program
using the language. That is how long it
can take you to code or debug using a
particular language

• Portability of the language. That has a
standardised language syntax and platform
environment

• Fit for the purpose. Some languages are
good for specific types of programs and not
others. e.g. Some are good for designing
games while others for system programs, or
business applications

• The level of expertise/skill of the
programmer. Some languages are good for
beginners and not others

• The ability of the program to interact with
other existing programs

• Availability of help facility to ensure
correct coding. e.g. Type checking facility
to minimise syntax errors.

• The cost of the program.

Using python

• IDLE has two modes: interactive and
script

• Interactive mode immediately returns
the results of commands you enter into
the shell.

• In script mode, you will write a script
and then run it.

• Under File, select New Window or
press Ctrl + N. That will bring up a new
window titled, “Untitled” to run the
script mode.

• We need to save our file before we
can run it. With the extension .py

• Under Run, select Run Module

• The Shell is restarted every time you
run a module in IDLE.

Declaring constants and variables

•Declaring a constant or Variable means
that when you are writing a code you
need to describe the variables or
constants you are going to use before
actually using them in the program.

There are two parts to a declaration:

•Declaration of a suitable name for the
constant/variable.

•Declaration of the data type to be used

1. Basic_pay as integer

2. Commission as a float

3. Actual_pay as a float

Value1 = input(“Enter first Value:”)
Value2 = input (“Enter Value2:”)
Product = Value1*Value2
Print (Product)

a = 2

b = 3

C = a + b

C = C + 1

Print (C)

Updating Variables

 This involves changing the value of the existing variable
name in a function

 For example:

 X = 3

 Y = X + 2

 Y = 2 * Y

 X = Y – X

 Print (X, Y)

Input and storage
instructions/commands

The program/computer requires information
to be entered into the system either by
retrieving it from a stored file or data keyed
in from the keyboard/terminal as the
program is running.

Data input and storage instructions accept
data that is entered into the computer and
store the value in the location with the given
variable names.
Common Commands used to input data are
READ or INPUT.

The input function allows the user to key
in data while the program is running
when he/she is prompted to do so.

Read statement

•The read statements obtains values from
internally stored data.

•e.g.

FOR i = 1 TO 10

READ (i)

Example

Write a program to enter the base and
height of a triangle then calculate and print
the area of the triangle.

1. length = input ("What is the length of the
Triangle?:")

2. height = input ("What is the Height of the
Triangle?:")

3. area = (1/2 * length)* height
4. print ("The area of the triangle is" + area +

"squire cms")

Task

What are the input and storage instructions
here?

Read the price of an item and calculate the
discount of 10%.
Enter the name and year of birth of a
person and calculate the person’s age.
Input the length of a side of a square tile
and find the area.

Let’s analyse these instructions to
determine the inputs and what we need to
store:

Read and store the price of an item.
Enter the name and year of birth of a
person.
Input the length of the side of a square tile.

Task

What are the processing instructions here?

Read the price of an item and calculate the
new price after a 10% discount.
Enter a temperature in degrees Celsius
and convert it to degrees Fahrenheit.
Input the name and year of birth and
compute and print the age of a person.

Let’s analyse these instructions to
determine what needs to be processed:

Calculate the new price after a 10%
discount.
Convert it to degrees Fahrenheit.
Compute the age of a person.

Output instructions

Output instructions allow information to
be displayed (written)on the screen.
Statements that include key words like
‘print’, ‘output’, ‘display’, ‘return’ and
‘write’ indicate what data should be
output to the screen.
Eg print(1+2)
What are the output statements here?
Enter the name and year of birth of a
person and compute and display the age
of the person.

Outputting a string constant

In case of a string constant, the program
displays the exact characters within the
quotation marks.

print ("Opiyo is my name“)
print ("Time“)
print ("Sum = 3 + 4“)

•Print is the function

•The argument is presented within round
brackets

•The body of the text is within inverted
commas (quotes)

•Quotes indicate to the interpreter should
interpret it as mere text to display.

Exercise

Write a program that returns a sentence:

Hello world, nice to see you

•Strings can be concatenated (more than
one string can be combined and
displayed as one

•Eg.

>>> “Hello, ” + “World”

Hello, world

1. Use Python to calculate the number of
minutes in a week.
2 Write a short program to print three lines:
your name, your birth date, and your
favorite color. The output should look
something like this:

My name is Warren Sande.

I was born January 1, 1970.

My favorite color is blue.

•If you want the text to include quotes
surrounded by other text, need to be
defined by mixing the quotes eg.To
display

He said to her, “how are you” before going
to work.

>>> print (“He said, ‘how are you’ before
going to work !”)

•To put part of the text to another line use
back slash followed with n for new line

ie \n

e.g.

print (“ the on going seminar is about: \n
Ecology \ n Biology”)

Text can be combined with variables

For example

a = 12

b = 23

sum = a + b

print (“ the sum of a and b is ” + sum)

Task

Write an algorithm to print a conversion
table of degrees Celsius to degrees
Fahrenheit.

Write a program to Output a supermarket
bill

Let’s analyse these instructions to determine
what we need to output.
Display the age of the person.
Print a conversion table.

1 In interactive mode, make two variables,
one for your first name and one for your last
name. Then, using a single print statement,
print your first and last names together.
2 Write a program that asks for your first
name, then asks for your last name, and
then
prints a message with your first and last
names in it.

3 Write a program that asks for the
dimensions (in feet) of a rectangular
room, and then
calculates and displays the total amount
of carpet needed to cover the room.

Structured program designs

This involves identifying the logical order
of the procedure required to accomplish
the task described in a given program
module.

Four basic control structures are used to
form the logic of a program in structured
program design:
i)Sequence control,
ii)Selection control,
iii) Case control
iv) Iteration (loop).

The Sequence control structure

 The sequence structure is used to show
a single action or one action followed
sequentially by another e.g. reading a
record, followed by calculating totals
and averages and then printing the
averages.

Sequence control structure

Action 1

(Read students record)

Action 2

(calculate Total)

Action 3

(Calculate average)

Action 4

(rank students)

The Selection control structure (if-
then-else)

 Selection is a process that allows a computer
program to compare values and then
decide what course of action to take based
on a certain condition.

 The selection structure therefore is used
to tell the program which action to take
next, based on a certain condition;
when the condition is evaluated, its
result is either true or false : if the result
of the condition is true, then one action
is performed; if the result of the
condition is false, a different or no
action is performed.

 For example, a condition that if the
average mark is 50 and above, the
student is passed, or else, the student
fails. i.e. if a condition is true, then do one
thing, else do another.

 Because of the above, the selection
structure is also known as the if-then-else
control structure.

Selection control structure
flowchart

Test
condition

THEN statement

ELSE statement
No

Yes

 IF score >= 60 THEN

 Comment = "Pass"

 ELSE

 Comment = "Fail"

 ENDIF

 PRINT comment

a = 8

b = 6

c = 9

If a > b:

c = a + c

Else:

c = c – a

Print (c)

Case control structure

This is a selection control structure used
where a condition can yield more than two
possibilities. Using
the If....Then....ElseIf statement.
It allows several alternatives or cases to be
presented, which saves the programmer the
trouble of having to indicate a lot of separate
IF…THEN…ELSE conditions.

if the condition is True, the statements
following Then are executed. If the
condition is False, each ElseIf (if any) is
evaluated in turn. If none of
the ElseIf statements are True (or there are
no ElseIf clauses), the statements
following Else are executed.

Flowchart of nested condition

if wage > 300000: then
payment = wage * .2

else:
if wage > 100000 : then

payment = wage * .1
else:
payment = wage * 1

The Repetition/looping control
structure (Iteration)

It is a control structure in which an
instruction is repeated as long as a certain
condition remains true or until a given
condition becomes true.

•A loop may be a finite loop or infinite loop:

•A finite loop is one where the number of
times a repetition is to be made is known

e.g.
i = range (1,25)
for numbers in i:
 print (numbers)

•An infinite loop is indefinite because it is
repeated without stopping.

•eg. If a condition never becomes false

There are two forms of iteration;
i)the Conditional looping
ii)the unconditional looping.

Conditional looping

This looping is repeated until a specified
condition is met or as long as a given
condition remains true.
It uses a selection process to decide
whether or not to carry on a process.
There are two forms of Conditional
looping;

i)Do-while
ii) Do-until

The do-while repetition control
structure

A while loop statement repeatedly executes
the action(s) inside the loop as long as a
given condition is true. i.e. until the condition
becomes false.

Having 0 as the first value (i.e. line 1: count = 0)
but incremented by 1 (line 4: redefines the count
variable as count = count + 1)

The do-until selection control
structure (Repeat Until loop)

The loop continues until the specified
condition is becomes true.
For example, a robot may be
programmed to move forward until it
detects an object.

Start

Do Task

Condition?

End

NO

YES

Unconditional looping (For loop)

This carries out a process a set number of
times before it ends without conditions set.
For example the following code will print
out numbers in the range of 1 to 24 before it
stops;
i = range (1,25)
for numbers in i:
 print (numbers)

i = range (1,25)
for numbers in i:

print (numbers)

(Numbers is a variable name
picked arbitrarily)

Roots of a quadratic equation

import math
a = int(input("Enter value of a: "))
b = int(input("Enter value of b: "))
c = int(input("Enter value of c: "))
d = b * b - 4 * a * c
if d < 0:

print("ROOTS are imaginary")
else:

root1 = (-b + math.sqrt(d)) / (2.0 * a)
root2 = (-b - math.sqrt(d)) / (2.0 * a)
print("Root 1 = ", root1)
print("Root 2 = ", root2)

Branching

The use of a special statement that makes
the computer jump to another statement
other than the next sequential instruction.
The common statement used include GOTO,
IF/THEN, ELSE and FOR

Endless execution/infinite loop

A loop becomes infinite loop if a condition
never becomes false.

var = 1
while var == 1 :
num = raw_input("Enter a number :")
print ("You entered: ", num”)
print ("Good bye!“)

Program testing and debugging

This involves going through the program
to identify and correct errors.
It also involves creating test data to
evaluate if the program generates the
expected output.

Debugger

This is a program used to test, detection
and remove syntax and logic errors in a
program.

Debugging: a form of program testing OR
the detection and removal of syntax and
logic errors in a program.

Debugging is a process that involves
running the program using test data to
discover and remove any errors in the
program. There are three types of errors:
syntax, logic and runtime errors.

A syntax error is an error in the grammar
of the programming language. These errors
include typographical errors and incorrect
use of the programming language.

A logic error is an error in reasoning,
such as the incorrect sequencing of
instructions, and inconsistent
comparisons and selection statements.

Runtime errors occur during the
execution/ running of the program.
e.g. if the program is stuck in an infinite
loop, such that the loop continues up to the
time limit allowed by the computer set limit.

Documenting the Program

The programmer should provide a record
about the program in the following
aspects:

•What the program does.

•Instructions for program users on how
to interact with the program.

1 Solve the following problems either using
interactive mode or by writing a small
program:
a) Three people ate dinner at a restaurant
and want to split the bill. The total is $35.27,
and they want to leave a 15 percent tip. How
much should each person pay?
b) Calculate the area and perimeter of a
rectangular room, 12.5 meters by 16.7 meters.
2 Write a program to convert temperatures
from Fahrenheit to Celsius. The formula for
that is: C = 5 / 9 * (F - 32).

3 Do you know how to figure out how
long it will take to get somewhere in a
car? The formula
(in words) is “travel time equals
distance divided by speed.” Make a
program to calculate
the time it will take to drive 200 km at 80
km per hour and display the answer.

System analysis

• A computer or information system is a
collection of interrelated components
that work together to process and
provide information.

• An information/computer system
constitutes users of the system,
hardware, software, data, and a
communication network.

• Users are required for the operation
of any information system. These
include:

• End users; these include those who
feed the system with data and those
who use the information produced.
E.g. Accounts, secretaries, students
customers, managers, etc.

• Hardware resources of a system
include all physical devices such as
video screen, computers, cameras, etc.
and storage media.

• Software resources of a system
include systems software such as
the i) operating sytems,
ii)application software such as an
examination analysis program or
accounting program, iii) the
procedures, which are the
operating instructions for people
who will use an information
system.

• Another type of system users are the
information system specialists who are
the people who develop and operated
the system e.g. Information analysts,
operators and programmers etc.

• The function of a system is to receive
inputs and transform them into
outputs.

e.g. And information system accepts
data as input and processes it into
information.

• System analysis is a stage in a system
development cycle of an enquiry of
the problem that an organisation will
try to solve with an information
system, which involves defining the
problem, identifying its cause,
specifying the solution and identifying
the information requirements that
must be met by a system solution.

• System development involves the
activities that go into producing an
information system’s solution to an
organisational problem. It includes
defining, designing, testing and
implementing a new system.

• A system development life cycle
includes the steps taken in the
development of an information
system. The steps include; problem
identification, feasibility study, system
analysis, system design, system
coding, system implementation, system
evaluation and maintenance.

Importance of systems
analysis
• To overcome a high failure rate of the

existing system

• The current system may be slow

• To address the complaints from clients
of the organisation

• To address decline in profits or
performance

• To reduce costs of operation and
maintenance

• To meet the requirements of new
technologies.

• To increase the flexibility of the
current system

Phases of systems analysis

